applying fuzzy wavelet like operator to the numerical solution of linear fuzzy fredholm integral equations and error analysis
نویسندگان
چکیده
in this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy fredholm integral equations of the second kind with arbitrary kernels. we give the convergence conditions and an error estimate. also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration. finally, to show the efficiency of the proposed method, we present some test problems, for which the exact solutions are known.
منابع مشابه
Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملApplying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملnumerical solution of two-dimensional fuzzy fredholm integral equations using collocation fuzzy wavelet like operator
in this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy fredholm integral equations of the second kind based on the fuzzy wavelet like operator. then, we discuss and investigate the convergence and error analysis of the proposed method. finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملApplication of Bernoulli wavelet method for numerical solution of fuzzy linear Volterra-Fredholm integral equations
This work, Bernoulli wavelet method is formed to solve nonlinear fuzzy Volterra-Fredholm integral equations. Bernoulli wavelets have been Created by dilation and translation of Bernoulli polynomials. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, and then we used it to transform the integral equations to the system of algebraic equations. We compared the result o...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of industrial mathematicsناشر: science and research branch, islamic azad university, tehran, iran
ISSN 2008-5621
دوره 7
شماره 3 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023